Electric motors continue to evolve and become increasingly more efficient. A significant improvement comes from brushless motor design which operates in a different manner than a standard DC brushed motor. For more details on how brushless motors work, CLICK HERE.
It is not uncommon to find OEM fuel pumps in modern high performance vehicle using brushless technology. They inherently draw less current (less heat) without sacrificing flow. But unlike traditional brushed variations, these pumps require a complex fuel controller to operate.

Dating back to 2013, Radium has embraced brushless pump technology. Fuel surge tanks utilizing both OEM brushless pumps (above) and aftermarket (below) have been available for several years. These have had limited interest due to the lack of affordable high-quality brushless controllers on the market. That is quickly changing.

For some time, the aftermarket company Injector Dynamics has been developing a state-of-the-art fuel controller for OEM brushless pumps from Bosch and Ti Automotive, shown below. 

The same Ti Automotive E5LM pump (found in the Bugatti Veyron) proved to have most potential. In it's most primitive state using the simple Ti Automotive BKS1000 controller, we've tested the E5LM pump at 13.5V to flow 590LPH at 43.5psi. See the tech article HERE.

We recently received a beta unit (above) from Injector Dynamics for testing. What you see is a high quality anodized aluminum control unit, Ti Automotive E5LM pump, stainless steel hardware, wire leads and associated components.

The fuel controller has 2 large cooling fans as well as diagnostic LEDs and a reset button for troubleshooting up to 11 error codes.

The Injector Dynamics BPC1100 system is RPM based and can run the pump at constant speed, MAP based speed, or PWM based speed using adjustable potentiometers (shown above). It is CAN equipped and has a pump speed output for ECU data logging. 

As expected, the controller is larger than others (Dim: 236mm x 160mm x 72mm). For a comparison, the Ti Automotive BKS1000 brushless controller is shown in the left foreground above.

To match all the features and capabilities of this unit, proper electrical is critical. It is mandated that a 125A fuse is used with 2AWG wire for the main power and ground connections. Shown above is an example of the minimum wiring to connect the ID BPC1100 to a Nissan R35 GT-R.

The Radium Engineering flow bench was set up using a MPR to regulate fuel pressure. The fluid used in the test has a specific gravity of 0.77 and flowed through a 6u Microglass Fuel Filter. Shown below are actual recorded numbers from the test bench instruments.

The graph above illustrates current draw at full output and various pressures with a 13.54V input. In extreme situations (8V input and 130psi @ 1100LPH) the current draw can get up to 95A. But don't forget, it's doing more than 5 times the work load as compared to a normal controller in those conditions.

As depicted above, current draw is only 5.5A in typical conditions (400LPH, 3BAR, 13.5V). 

The graph shown above is NOT a misprint. This system can flow over 1100LPH at ANY pressure up to 150psi.

With all of its features and potential, this system from Injector Dynamics is very impressive. At maximum settings, the pump could easily output over 1100lph.

It's unique in that the controller will always hit the target flow, even when conditions like fuel pressure and voltage vary. The only difference you'll notice is the current draw required to make it happen will change. When you compare this system to many others, it doesn't seem possible. This system gives the user the ability to specify their flow rate at any pressure, something not possible with a brushed fuel pump.

We predict that this system could replace the need for mechanical fuel pumps and could even take the place of multiple brushed pump setups as the norm. At this time, we are unsure when it will be available or how much it will cost. But, expect to get what you paid for.

Furthermore, this system can be used in many current Radium Engineering products. As long as the description states "...Ti Automotive E5LM...", the BPC1100 brushless system is compatible.
For more information on pricing and availability, please contact Injector Dynamics.